- Welcome to the Handbook!
- Welcome to Handbook of Regression Method

Welcome to Handbook of Regression Method. Here is the welcome message from Dr. Young ...

- Some Notes about the Handbook
- Supplementary Documents

Here is some inevitable typo found by users

- Introduction
- Introduction to Chapter 2

An analysis of variance (ANOVA) table for regression displays quantities that measure how much of the variability in the response variable is explained and how much is not explained by the regression relationship with the predictor variable. The table also gives the construction and value of the mean squared error (MSE) and a signiﬁcance test of whether the variables are related in the sampled population.

- 02.08.01 || Toy Data
- 02.08.02 || Steam Output Data
- 02.08.03 || Computer Repair Data
- Chapter 2 || Section 8

### Regression Results

### Data Plots

### R Code

### Regression Results

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 3

An analysis of variance (ANOVA) table for regression displays quantities that measure how much of the variability in the response variable is explained and how much is not explained by the regression relationship with the predictor variable. The table also gives the construction and value of the mean squared error (MSE) and a signiﬁcance test of whether the variables are related in the sampled population.

- 03.06.01 || Steam Output Data
- 03.06.02 || Computer Repair Data
- 03.06.03 || Pulp Property Data
- Chapter 3 || Section 6

### Data Plots

### R Code

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 4

- 04.07.01 || Steam Output Data
- 04.07.02 || 1993 Car Sale Data
- 04.07.03 || Black Cherry Tree Data
- Chapter 4 || Section 7

### Regression Results

### Data Plots

### R Code

### Regression Results

### R Code

### Regression Results

### R Code

- Introduction
- Introduction to Chapter 5

An analysis of variance (ANOVA) table for regression displays quantities that measure how much of the variability in the response variable is explained and how much is not explained by the regression relationship with the predictor variable. The table also gives the construction and value of the mean squared error (MSE) and a signiﬁcance test of whether the variables are related in the sampled population.

- 5.3.1 || Steam Output Data
- 5.3.2 || Computer Repair Data
- 5.3.3 || Fiber Strength Data
- Chapter 5 || Section 3

### Regression Result for Steam Output Data

### Code for Steam Output Data

### Regression Result for Computer Repair Data

### Code for Computer Repair Data

Ndaro et al. (2007) conducted a study about the strength of a particular type of ﬁber based on the amount of pressure applied. The experiment consisted of ﬁve replicates at each of six diﬀerent water pressure levels for a total sample size of n = 30.

The measured variables are

• Y : tensile strength of ﬁber (measured in N/5 cm)

• X: amount of water pressure applied (measured in bars); the unique levels are 60, 80, 100, 120, 150, and 200

### Method

### Plots for Fiber Strength Data

### Code for Fiber Strength Data

- Introduction
- Introduction to Chapter 6

A
**multiple linear regression model**
is a linear model that describes how a response variable relates to two or more predictor variables (or transformations of those predictor variables).

For example, suppose that a researcher is studying factors that might aﬀect systolic blood pressures for women aged 45 to 65 years old. The response variable is systolic blood pressure (Y). Suppose that two predictor variables of interest are age (X1) and body mass index (X2). The general structure of a multiple linear regression model for this situation would be

- 6.7.1 || Thermal Energy Data
- 6.7.3 || Tortoise Eggs Data
- Chapter 6 || Section 7

### Regression Result for Pulp Property Data

### Data Plot 1

### Code for Pulp Property Data

This dataset of size n = 18 contains measurements from a study on the number of eggs in female gopher tortoises in southern Florida (Ashton et al., 2007). The number of eggs in each tortoise - called the clutch size - was obtained using X-rays. The variables are:

• Y : number of eggs (clutch size)

• X: carapace length (in millimeters)

### Method

### Data Plot 1

### Code for Plots

- Introduction
- Introduction to Chapter 7

- 07.04.01 || Thermal Energy Data
- 07.04.02 || Tortoise Eggs Data
- Chapter 7 || Section 4

### Regression Results

### Data Plots

### R Code

### Regression Results

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 8

- 08.06.01 || Thermal Energy Data
- 08.06.02 || Simulated Partial Leverage Data
- Chapter 8 || Section 6

### Regression Results

### R Code

- Introduction
- Introduction to Chapter 9

- 09.06.01 || Auditory Discrimination Data
- 09.06.02 || Steam Output Data
- 09.06.03 || Tea Data
- Chapter 9 || Section 6

### Regression Results

### Data Plots

### R Code

### Data Plots

### R Code

### Regression Results

### R Code

- Introduction
- Introduction to Chapter 10

- 10.05.01 || Punting Data
- 10.05.02 || Expenditures Data
- Chapter 10 || Section 5

### Regression Results

### R Code

### Regression Results

### R Code

- Introduction
- Introduction to Chapter 11

- 11.06.01 || Blood Alcohol Concentration Data
- 11.06.02 || U.S. Economy Data
- 11.06.03 || Arsenate Assay Data
- Chapter 11 || Section 6

### Data Plots

### R Code

### Regression Result

### Code for U.S. Economu Data

### Regression Results

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 12

- 12.06.01 || Computer-Assisted Learning Data
- 12.06.02 || Arsenate Assay Data
- Chapter 12 || Section 6

### Regression Results

### R Code

### Regression Results

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 13

- 13.05.01 || Google Stock Data
- 13.05.02 || Cardiovascular Data
- 13.05.03 || Natural Gas Prices Data
- 13.05.04 || Air Passengers Data
- 13.05.05 || Mouse Liver Data
- Chapter 13 || Section 5

### Data Plots

### R Code

### Regression Results

### R Code

### Regression Results

### R Code

### Regression Results

### R Code

### Regression Results

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 14

- 14.06.01 || Punting Data
- Chapter 14 || Section 6

### Regression Results

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 15

- 15.05.01 || Sleep Study Data
- 15.05.02 || Cracker Promotion Data
- 15.05.03 || Odor Data
- 15.05.04 || Yarn Fiber Data
- Chapter 15 || Section 5

### Regression Results

### Data Plots

### R Code

### Regression Results

### Data Plots

### R Code

### R Code

- Introduction
- Introduction to Chapter 16

- 16.05.01 || Prostate Cancer Data
- 16.05.02 || Automobile Features Data
- Chapter 16 || Section 5

### Regression Results

### Data Plots

### R Code

### Regression Results

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 17

- 17.05.01 || Gamma-Ray Burst Data
- 17.05.02 || Quasars Data
- 17.05.03 || LIDAR Data
- Chapter 17 || Section 5

### Regression Results

### Data Plots

### R Code

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 18

- 18.07.01 || Extramarital Affairs Data
- 18.07.02 || Motorette Data
- 18.07.03 || Bone Marrow Transplant Data
- 18.07.04 || Durable Goods Data
- Chapter 18 || Section 7

### Regression Results

### R Code

### Regression Results

### Data Plots

### R Code

- Introduction
- Introduction to Chapter 19

- 19.04.01 || Puromycin Data
- 19.04.02 || Light Data
- 19.04.03 || James Bond Data
- Chapter 19 || Section 4

### Data Plots

### R Code

### Regression Results

### Data Plots

### R Code

### Regression Results

### Data Plots

### R Code

- 20.05.01 || Subarachnoid Hemorrhage Data
- 20.05.02 || Sportsfishing Survey Data
- 20.05.03 || Cheese-Tasting Experiment Data
- 20.05.04 || Biochemistry Publications Data
- 20.05.05 || Hospital Stays Data
- Chapter 20 || Section 5